CUNY SEMINAR IN LOGIC, PROBABILITY, AND GAMES

**Evaluation G****ames for many valued logics**

Ignacio Ojea (Columbia University)

4:15 PM, March 28th, 2014

Room 3305, CUNY Graduate Center

*Abstract.* Evaluation Games for classical logic are well known. Following early applications of games in model theory, by Ehrenfeucht and Fraisse, Hintikka and Parikh independently proposed a game-theoretic approach as a way of defining the classical semantics. A great deal of the game theoretic approach has been more recently studied by van Bentham. The original idea was to define the truth-value of a wff, in a given model, in terms of the existence of a strategy for one of the players (the “Verifier” and “Falsifier”) in a certain two-person game. These games can be also viewed in terms of pay-offs. Recently I suggested a natural extension of these games to the case of many valued logics, where the notion of a Nash equilibrium plays a crucial role.