Baldwin: Axiomatic Set Theory and L_{omega_1,omega}

Axiomatic Set Theory and L_{\omega_1,\omega}
John T. Baldwin (Mathematics, UIC)
Friday, April 20, 2012, 12:30 PM
CUNY Graduate Center, room 6417

Abstract. In the late 1960’s model theory and axiomatic set theory seemed to be inevitably intertwined. The fundamental notions of first order stability theory are absolute. We describe the role of this fact in the development of first order model theory independent from set theory since the 1970’s. The role of extensions of ZFC in infinitary logic is muddled. Important results are proved using weak extensions of ZFC; the use is not in general proved essential. We expound the following proof-scheme: (1) Prove an infinitary sentence is consistent with ZFC. (2) Prove there is a model of set theory for which this sentence is absolute. (3) Deduce the property it expresses is provable in ZFC. We will describe how this technique implies the following recent result: Theorem (Shelah) Let \phi be a sentence of L_{\omega_1, \omega}. (a) If ‘algebraic closure’ fails exchange on models of phi then \phi has many models in \aleph_1. (b) If \phi is pseudo-minimal then it has model in the continuum. Here `algebraic closure’ and `pseudo-minimal’ are modifications of classical notions appropriate for the context.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s