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Abstract

I begin with a gap in the literature on conversational relevance, wherein
utterances that shift probability distributions included in the common
ground do not count as relevant if they do not rule out one or more an-
swers to the question under discussion. In order to provide a satisfying
account of probabilistic conversational relevance, I introduce a relevance
measure, R(·). I motivate six axioms for such a function, and show that
they uniquely characterize the symmetrized Kullback-Leibler divergence.
I then show how we can incorporate this result into an expanded defi-
nition of conversational relevance. Keywords: Language, Common
Ground, Relevance, Probability, Formal Epistemology.

1 Introduction

Some utterances are relevant, and others are not. This is a trivial statement,

but to properly categorize an utterance as relevant or irrelevant is a nontrivial

task. In this paper, I present one way to define the relevance of certain kinds of

conversational moves. I do so by motivating the need for a graded measure of

probabilistic relevance and proving that one measure follows uniquely from the

desiderata that I motivate.

Ever since Grice introduced his well-known maxims (1975), philosophers and

linguists have sought to provide a satisfying account of relevance. My aim is not

to arbitrate between these various accounts. Instead, I work specifically from

Roberts’ influential model (2012), looking to usefully expand upon the definition
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of relevance that she gives. However, the issues that I identify will arise under

any model of conversational relevance, and the definition of relevance that I give

should be suitable for any sufficiently strong model.1

Roberts defines relevance in the context of interlocutors who are engaged in

the process of answering a question (the question under discussion) - in her

model, an utterance is relevant when it eliminates at least one of the possible

answers to the question under discussion. In this paper I expand upon this

definition in order to capture the relevance of a specific kind of utterance: those

that do not completely rule out any answers to the question under discus-

sion, but that shift probability distributions defined over its possible answers.

An agent might learn evidence that substantially changes the likelihood that

one answer to the question obtains, without actually excluding any possibility;

we would like a model that makes this evidence relevant to the discourse.2

I will argue for it further in §2, but the motivation for this turn is fairly

straightforward and intuitive. Roberts’ original model is elegant and powerful,

but it leaves out a class of utterances whose ubiquity in everyday conversation

cannot be overstated. If we can expand the original setup to include these

probabilistic cases without disrupting the original structure, we will have made

a useful contribution.

In order to provide a satisfying account of probabilistic relevance, I introduce

a way to measure probabilistic conversational relevance, the function R(·).3 To

characterize R(·), I motivate some desiderata that (I posit) any such measure

1E.g., Sperber andWilson offer an account of relevance that has been enormously influential
in linguistics, psychology, and elsewhere (1986). Although I am not working within their
framework, the relevance measure I introduce could be used to measure the information that
an utterance conveys, which is central to their account.

2Of note, this notion is not novel. Beaver, Roberts, Simons, and Tonhauser mention the
probabilistic limitations of the original definition in What Projects and Why (2010).

3In Roberts’ model, relevance is a relation between a move and a question, whereas R(·) is a
function of probability distributions. I am not claiming that R(·) is the relevance-relation, and
the definition of relevance that I arrive at maintains the relation between move and question.
R(·) is a way of backing into the relevance of a move to a question by looking at probability
distributions before and after the fact. I discuss this further at the end of §3.4.
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should have. I then prove that these desiderata, which I present as axioms, char-

acterize a single divergence measure: the symmetrized Kullback-Leibler (KL)

divergence.4 This result is interesting in its own right. The fact that the desider-

ata that matter to us in gauging the relevance of an utterance characterize the

KL divergence is worth noting, for philosophers of language and formal episte-

mologists alike.

My focus will be on measuring the relevance of an utterance to the agent, as

opposed to its objective relevance. This aim is reflected in the basic structure of

R(·) itself. Many similar measures (like those of confirmation, or explanatory

goodness) rely on some combination of an agent’s subjective priors and Bayes’

theorem.5 R(·), on the other hand, takes as its argument only two probability

distributions; how the agent-in-question got from one to the other is irrelevant.

In this way our measure is not normative - it does not tell us how a rational

agent ought to adjust her priors. Instead, we deal only with her probabilistic

attitudes before and after updating. While I am advocating for R(·) in the

context of conversational relevance, it is worth considering how divergence mea-

sures with this kind of quality might be useful in other areas.

The paper will proceed as follows. In §2, I elaborate more on Roberts’ origi-

nal model, and motivate the need for a probabilistic expansion of her definition

of relevance. The bulk of our work is done in §3; here I begin by describing the

characteristics we might want a measure of relevance to have, and discuss the

shortfalls of existing measures. I then motivate each of our axioms and prove

the representation theorem for R(·). Upon doing so, I will be able to offer a

4Following convention, I refer to the KL divergence as DKL(X,Y ) (also called relative
entropy), and the symmetrized version as DKL(X,Y )+DKL(Y,X). Kullback himself referred
to the symmetrized measure itself as the divergence between two distributions (1959). Harold
Jeffreys was, in fact, the first to introduce the measure (1939).

5There are several measures of concepts like confirmation, explanatory goodness, and rele-
vance that have been developed and studied in the literature, and bear some relation to that
which we will arrive at here. Some of these include, but are not limited to, those analyzed by
Carnap (1945), Good (1968), McGrew (2003), and Glass and Schupbach (2023). I touch on
this further in Section 3.
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new definition of relevance. Because R(·) is a graded quantity, and relevance

in Roberts’ model is on-off, I suggest a stake-sensitive cut-off point (that is: an

utterance is relevant when R(·) is greater than some k, where k varies given the

stakes of the context). Finally, in §4, I discuss some likely objections.

I should offer here a quick note on my methodology, which is relatively stan-

dard. I use linguistic data to motivate the need for a probabilistically-oriented

measure itself, by noting the ubiquity of ordinary-language discourse with prob-

abilistic content. I similarly motivate the axioms from which the measure is

derived, by taking note of the kinds of qualities that our ordinary usage of

relevance and measure has.

2 Relevance in Structured Discourse

In this section I proceed in two parts. First, I review Roberts’ model of discourse,

and the definition of relevance that we will be working with. Then, I show how

this definition excludes utterances that entail shifts in probability distributions

defined over the possible answers to the question under discussion. I claim

that many such utterances are obviously relevant, and that we should expand

our model to include them.

2.1 Relevance without probabilities

My first goal is to briefly reiterate the structure of Roberts’ original model, in

order to provide better context for my own definition of relevance. I will at-

tempt to keep this portion short and simple; the majority of the definitions she

gives will be unnecessary for my own explication.

Roberts offers a precise way to model the information structure of a dis-

course (2012). A discourse is, simply, an act of conversation between two or

more interlocutors who are engaged in the process of communal inquiry. The
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interlocutors share between them a common ground, the set of propositions

for which the interlocutors each behave as if they each take them to be true,

and a context set, the set of possible worlds in which all of the propositions

held in the common ground are true.6 For Roberts, and thinkers working in

a similar paradigm,7 inquiry is aimed at narrowing the context set down to

a single world: in effect, answering the super-question, what world are we in?

Interlocutors do so by introducing new sub-questions and answers that help to

narrow down the possibilities.

The information structure of a discourse is structured similarly. In a

given discourse, we begin with the question under discussion, the question

that the interlocutors are trying to answer. A question, q, is identified by the

set of its possible answers, (a1, · · · , an). An interlocutor then might make a

conversational move.8 There are two kinds of moves that are acceptable in this

model: questions and assertions. Assertions aim to directly answer the question

at hand, by ruling out one or more of the possible answers. In the above case, a

successful assertion would rule out at least one of the ai, and an assertion that

fully answered the question would rule out all but one of the ai.

Questions, on the other hand, open up new avenues of inquiry. Acceptable

questions are those whose resolutions might draw the interlocutors closer to an-

swering the previous question. We say that questions that are acceptable in this

sort of way are part of a strategy.

We can begin here to construct an informal definition of relevance. Asser-

tions should count as relevant when they answer the question (or one of the

sub-questions) we are working on, and questions should count as relevant when

their answers will bring us closer to answering the previous question. This

6I ignore the rich debate about what the common ground really is, what it means for an
agent to act as if a proposition is true, and so-on.

7E.g., Stalnaker (1978).
8I use ‘move’ and ‘utterance’ interchangeably.
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approximates the definition that we will be working with:

Definition 1. A move m is Relevant1 to the question under discussion q iff

m either introduces a partial or full answer to q (m is an assertion) or is part

of a strategy to answer q (m is a question) (Roberts, 2012).

In sum, a relevant move in a discourse is one that either introduces a new

question, whose answer will either partially or fully answer the question under

discussion, or an assertion, that introduces a partial or full answer to the

question under discussion.

2.2 Relevance with probabilities

To better motivate the need for an expanded definition of relevance, I introduce

a simple example. The case I present here is straightforward, and might come

across as trivial. This obviousness is meant to be a feature: as we will see,

cases like this are not fringe scenarios meant to be explained away by appeals to

vagueness and the like. Instead, they are paradigmatic examples of discourse,

and, as such, ought to be captured by our models.

In what follows I use the term ‘updating,’ but I remain agnostic as to what

that means for the agents at hand. More specifically, I do not require that our

agents are updating their priors by Bayesian conditionalization. All I require is

that the agents change the probabilities that they assign to the possible answers.

First, I need to make an additional assumption: that probabilities can be

held in the common ground. I could spend a great deal of space here dis-

cussing the matter, but I will encourage curious readers to refer to Yalcin’s

influential paper on the subject (2012). What this really means, in the con-

text of my discussion, is that interlocutors can, and often do, agree upon the

probability distributions defined over the possible answers to the questions that

they are discussing, on the ways that they will update those distributions upon
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learning new evidence, and that this agreement is common knowledge for the

agents.9 I will discuss drawbacks to this in §4 but, for now, I will be referring

to shared probability distributions.

I will also refer to agents who update their priors on evidence that is entailed

by an utterance. Here I am adding something additional to Roberts’ original

model: evidence as a mediating concept. I do so to leave room for those ut-

terances that are not such that they can be immediately updated upon. I do

not claim that the evidence at hand is the strongest evidence entailed by the

utterance. Instead, all I require is that each interlocutor involved deduces the

same evidence as do the others. This again highlights the subjective nature of

the task at hand: I care about the evidence that the agents are actually able

to glean from proffered utterances, as opposed to the totality of the evidence

that those utterances entail (especially when the entailed evidence might not be

available or clear to the agents involved).10

Case 1. Consider two doctors, discussing whether or not a patient, Mo, might

be a suitable candidate for a new medication. Under our model, this is the

question under discussion. Call it Q1 = (is Mo a suitable candidate for

medication?). Now, imagine that having a certain genetic trait, G, would make

Mo a good candidate. So, the doctors introduce a sub-question: does Mo have

genetic trait G? Call this sub-question q1. This is a relevant conversational

move, because the answering of the sub-question answers the question under

discussion above it.

Next, say that the instance of G in the general public is random, and that

one out of every two people have it. So, our doctors, being well-educated on

9I treat the agents involved as reflectively aware of the relevant probability distributions
that they hold. I do not see any difficulty arising in cases in which they are unaware of
their own credences, provided they are able to update those credences on new evidence, and
eventually reach conclusions about the answers over which the probabilities are held. However,
this sort of situation would require a different conception of common ground, with a weaker
common knowledge condition.

10In this way our agents are not required to be logically omniscient.
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such matters, each hold prior probability over the likelihood of Mo’s having

G equal to .5. Call the shared probability distribution over q1 X1, and say:

X1 = (x1, x2) = (.5, .5), with x1 = Pr(Mo has G), and x2 = Pr(Mo doesn’t

have G).

Our good doctors order a blood test. The results are informative, but not

perfectly conclusive. Call the results of the blood test E1, and say that one of

the doctors offers E1 as the next conversational move. They both update their

priors on this new evidence, and arrive at the posterior distribution Y1 = (.9, .1),

with y1 = Pr(Mo has G) and y2 = Pr(Mo doesn’t have G).11

In ordinary practice, uttering E1 would be a relevant conversational move:

it substantially shifted the doctors’ priors. Practically, in cases where, say, the

medicine at hand has minimal negative side effects, it could be enough data

for them to answer the original question to the affirmative (that, yes, Mo is

a suitable candidate for the medication). But, because E1 does not formally

exclude either of the answers to q1, it is an irrelevant conversational move under

Relevance1.

These are the kinds of cases that should encourage us to adopt an expanded

definition of relevance. It is not contrived: discourse like the one described above

happens all of the time. The next part of the task will be to accurately model it.

3 Towards a New Definition of Relevance

In this section, I walk through the steps needed to provide a satisfactory account

of relevance, one that will be equipped to handle cases like the one described

above. In §3.1, I posit that a measure of relevance will be necessary for such

11‘Posterior’ probability traditionally refers to probability distributions arrived at via appli-
cation of Bayes’ theorem, but I use it to refer to a distribution arrived at via the application
of any updating method, not just Bayes’.

8



a definition. In §3.2, I show why most existent measures of relevance will not

suffice. In §3.3, I motivate the axioms that will determine the measure, and

prove that they uniquely characterize the KL divergence. Finally, in §3.4, I give

a new definition of relevance that incorporates this measure.

3.1 Probabilistic relevance is graded

My argument here is straightforward. I claim that we need a way to measure the

relevance of utterances that cause probabilistic shifts, and I call that measure

R(·).

Upon first glance, one might think that any utterance that entails any shift

in the probability distribution over the question at hand should count as rele-

vant. Surely, though, there is quite a difference between utterances that induce

substantial shifts, like the one above, and an utterance that (e.g.) shifts a dis-

tribution from (.5, .5) to (.5001, .4999). If we count each of these conversational

moves as relevant, we lose much of the explanatory power that we hope to get

from relevance in the first place.

So, our concept of relevance ought to be graded. Any utterance that entails

any change in the probability distribution over the answers to q has some rel-

evance, but some such utterances have more relevance than others. Hence, I

introduce a relevance measure, R(·). R(·) will measure the relevance of a move,

m, to a question under discussion, q. We want R(·) to give us a numerical

representation of this relevance; we cannot plug in propositional questions and

assertions and expect a numerical outcome. So, we define R(·) as a function of

X (the prior probability distribution over q) and Y (the posterior distribution,

after updating on the evidence entailed by m). Intuitively, R(·) will work as a

kind of distance measure between the two probability distributions. It ought

to tell us, in essence, how different the posterior distribution is from the prior.
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The greater the difference between X and Y , the more relevant m is to q.

3.2 Existing measures are inadequate

Philosophers have long debated the merits of various relevance measures, and

it will be useful to consider some of them here. Most often these are meant to

measure the relevance that a piece of evidence, E, has vis-à-vis a hypothesis, H,

or are a measure of a hypothesis’ ability to account, explanatorily, for a piece

of evidence. One might believe that one of these measures will be sufficient; all

we need to do now is to choose whichever best suits our purposes, and go from

there. However, there are some crucial differences that we must first consider.

Let us examine Good’s relevance measure (1968), defended later on by Mc-

grew (2003). Of course there are others that differ substantially (e.g., Schupbach

and Glass’ log-measure of explanatory goodness [2023]), but they share similar-

ities that suffice for what I say here. Consider the following:

rG(e, h) =
Pr(e|h)
Pr(e)

rG(e, h) takes as its arguments two propositions, e and h. Applied to our lan-

guage case, h is equivalent to a possible answer to the question under discussion,

and e to the move whose relevance we are trying to measure (or to the evidence

that that move entails). To find the total relevance of the utterance, we could

take the sum of the measure over each of the possible answers.

Here we certainly have a plausible strategy. Moreover, using a measure that

takes propositions as its arguments might be a positive outcome: it simplifies our

model, without requiring the agents at hand to first update their probabilities.

But, herein lies the difficulty. We want to measure relevance for the agents; we

can only do so if we allow them to first update, and then measure the distance
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between the resultant probability distributions. Functions like Good’s (and the

others mentioned) all take propositions as their arguments, and measure a more

objective relevance than we would like, by way of Bayesian conditionalization

(as is included in the numerator of Good’s measure).

To stress this point: there are reasons to allow for our agents to be non-

Bayesian. One might prefer an inference-to-the-best-explanation updating rule,

as Douven defends (2013). Or, the agents-in-question might update in a way

that seems incoherent and irrational to the impartial observer. In actual prac-

tice, human reasoners are not perfectly rational; we would like to be able to de-

fine relevance in a way that captures actual practice. So, we leave the updating

method open: the agents can move from the prior to the posterior distributions

in whichever way they would like.

Given the last point, we choose to restrict our attention to measures that

take probability distributions as their arguments, without supposing Bayesian

conditionalization to reach the posterior distribution. There are, however, sev-

eral functions we could choose from: Euclidean distance metrics, the Brier Score

(see Pettigrew, 2016), the Jensen-Shannon divergence (see Lin, 1991), etc. As

a result, I choose to first identify some desiderata, and use these to motivate a

unique measure.

3.3 Defining R(·)

Before we move on, let me revisit the dialectic up to this point. I first showed

that Roberts-style relevance is unequipped to deal with probabilistic discourse:

utterances that shift probability distributions do not count as relevant conversa-

tional moves, even when they should. I then argued that an expanded definition

of relevance will require a way to measure the relevance of an utterance. Be-

cause there is such difference between the contributions of utterances that entail
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large probability shifts and those that entail small ones, we need a way to be

able to formally rank them. I call the function that we will use to measure

the relevance of these shifts R(·). In the previous section, I showed that many

existing relevance measures are unsatisfying for our purposes here; we want to

allow our interlocutors to choose their own updating methods, in order to best

measure relevance for the agent.

Hence, my purpose in this section is to motivate some of the qualities that

our measure ought to have. These desiderata will, in turn, become axioms, and

I will then prove that these axioms uniquely characterize the symmetrized KL

divergence: R(X,Y ) = DKL(X,Y ) +DKL(Y,X).

Take X and Y to be two probability distributions, with X = (x1, · · · , xn)

and Y = (y1, · · · , yn). Call X the prior distribution and Y the posterior, ob-

tained after our interlocutors updated on some new evidence, E, entailed by

a conversational move, m. Our task is to find out how relevant m was to the

conversation, by way of the size of the change that E induced.

We will start by finding the informational gain from X to Y . To do so, we

will focus on the difference between the individual members of X and Y - that

is, for each i, the gain from xi to yi. This strategy is pragmatic, allowing us to

first focus on discrete units of probability, as opposed to whole distributions. It

will help, too, to remember that each of the individual probabilities is defined

over a possible answer to the question under discussion. By focusing our

attention here, we are finding the relevance of the utterance in-regards-to that

particular possible answer. For ease, say that the informational gain between

any xi and yi is d(xi, yi).

Now our job is to define some desiderata for d(·). To start with, consider a

simple case: two distributions, X1 and Y1, such that xi = yi. I say that, thus,

d(xi, yi) = 0. Regarding the specific possible answer over which the probabil-
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ities xi and yi are both defined, no information has been lost or gained, and

d(·) should reflect this. Considering the other direction next, imagine any case

where we know that d(xj , yj) = 0. Then, we should know that xj = yj ; any

difference between the two, no matter how small, should be captured by some

difference in the value of the measure. Thus, we have our first axiom:

Axiom 1. d(x, y) = 0 iff x = y.

Next, we want to know how our measure ought to behave when its arguments

are scaled: that is, how will d(x, y) compare to d(hx, hy), with h an arbitrary

constant? One might assume that the measurements should obviously be differ-

ent. However, we should be careful here: certain shifts in probability, although

small in a purely Euclidean sense, represent massive informational gain. For the

sake of argument, consider three shifts in probability: one from .05 to .1 (call

this shift S1), one from .4 to .8 (S2), and another from .2 to .3 (S3). The salient

question here is as to how d(.05, .1), d(.4, .8), and d(.2, .3) should differ. I show

below that we should have d(.05, .1) = d(.4, .8) > d(.2, .3).

To demonstrate this point, I will make use of Bayes’ theorem. The goal is to

show that the strength of the information necessary to induce S1 and S2 is the

same; the information required for S3 will be weaker. Call the possible answers

over which the agents hold these probabilities A1, A2, and A3, respectively, and

call the evidence entailed by the three utterance E1, E2, and E3. Starting with

S1, by Bayes’ theorem, we have it that Pr(A1|E1) = Pr(A1)Pr(E1|A1)
Pr(E1)

→ .1 =

(.05)Pr(E1|A1)
Pr(E1)

→ Pr(E1|A1)
Pr(E1)

= 2. By the same reasoning, we get Pr(E2|A2)
Pr(E2)

= 2,

and Pr(E3|A3)
Pr(E3)

= 1.5.

The ratios here, Pr(E|A)
Pr(E) , tell us how likely the evidence must be given the

possible answer (the likelihood, Pr(E|A)), and how unlikely the evidence must

be (Pr(E)), in order to induce the shifts.12 When this ratio is larger, the shift

12Notice that this ratio is Good’s relevance measure, as discussed in the previous section.
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has a more stringent informational requirement: an agent must observe evi-

dence that is less likely in general, but more likely given the hypothesis. We

see, now, that shifts that differ by scalar multiplication will always have the

same likelihood-to-evidence ratio. We also see that the shift S3, although a

larger Euclidean distance, has a smaller informational requirement than does

S1. The above phenomenon is made even more acute by shifts of several or-

ders of magnitude (e.g., imagine a shift from .00001 to .1): the informational

requirements for these types of shifts are very large.

The informational gain from one probability to the next, as represented by

d(·), should reflect these differences and similarities. Because Pr(E|A)
Pr(E) is the same

for shifts that differ by scalar multiplication, we assert that d(hx, hy) = d(x, y).

This, in turn, will be our second axiom, with the caveat that h > 0:

Axiom 2. For any h ∈ R+, d(hx, hy) = d(x, y).

For our next axiom, I will start by introducing another case:

Case 2. Consider the doctors and patient from Case 1. Say that the doctors

again start with shared prior (.5, .5) over q1, whether or not Mo has genetic

trait G. This time, however, they order two blood tests. The evidence from

the first test, E1, moves the probability distribution to (.3, .7); given this one

test, they both now have decently high credence that Mo does not have the

trait in question. To be sure, though, they order another, more accurate test.

Its results are conclusive in the other direction. Following the utterance of this

new data, E2, the doctors hold probabilities (.8, .2) over the answers to q1.

Now say that the doctors hear the same evidence, but in a different order.

First, E2, the more conclusive blood test, moves the probabilities to (.9, .1) over

q1. To be safe, they order the other test, too. Upon learning its result, E1, their

probabilities shift to (.8, .2).

In both cases the doctors arrived at the same probability distribution. Should
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d(.5, .3)+d(.3, .8) = d(.5, .9)+d(.9, .8)? I claim: yes. In both cases, the doctors

learned the same total evidence, which affected their final probability values in

the same way. Net informational gain should be the same, regardless of the path

required to get there. I thus introduce our third axiom, path-independence:

Axiom 3. For any q, q′ ∈ (0, 1), d(x, q) + d(q, y) = d(x, q′) + d(q′, y).

Next, I claim that d(·) should be continuous and differentiable. At this

level of abstraction the point might seem weak, but it becomes clearer when we

begin to more carefully consider the work that d(·) and R(·) will be doing.13 If

d(·) behaves badly in the realm of continuity, we end up with properties like the

following: changes in probabilities resulting in changes in d(·) that are consistent

with the size of the input, and then a small change in probability followed by a

jump the size of in d(·). In-regards-to differentiability, without it we would get

angles, sharp and drastic changes in the behavior of d(·), again after only small

changes in the probabilistic inputs. We need our measure to make consistent

claims about the relevance of various utterances; a discontinuous measure will

result in discontinuous judgments of relevance.

Hence, we make our function smooth:

Axiom 4. d(·) is a continuous and at least once-differentiable function (d(·) is

a C1 function).

Now we turn our attention to D(·). Recall that d(·) is a measure of the

informational gain between the individual probabilities; D(·) will be a way of

summing the individual d(·)’s. We could merely take the sum of the d(xi, yi)

for each i in X and Y , but we would run into a problem. d(·), on its own, is

a measure of the informational gain between two individual probabilities. As

such, and as ensured by Axiom 2, a lot of weight will be given to those small

13Given the additive and multiplicative properties of continuous and differentiable functions,
a continuous and differentiable d(·) will generate a continuous and differentiable R(·), provided
that we build R(·) in the right kind of way.
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changes that require a great deal of information (e.g., a shift from .001 to .01).

This result is necessary when we are discussing informational gain in-and-of

itself, but becomes problematic when we turn our attention to relevance.

As a brief example to stress this point, consider a classic case of faulty

statistics: a friend of mine, Joe, is getting tested for a very rare disease. Its

likelihood, a shared prior between him and his doctor, is .0001. He tests positive

for it, but the test is not perfectly accurate, and so the posterior likelihood that

he has the disease is now .001. He could take this shift as hugely relevant, and

spend the rest of the week in mortal terror, or he could understand that the

probability of his having it is still quite low. In this case the informational gain

from .0001 to .001 is high, but the relevance of the result is still low.

So, we walk a middle path. Axiom 2 makes sure that small shifts are

accounted for, but Axiom 5 will make sure that those shifts do not have undue

impact on the measure. We will do so by taking the ex-post average of d(·)

taken over two distributions, a weighted average of the d(·) values. That is, we

will multiply each d(xi, yi) by yi, thus weighting the measure by the size of the

posterior probability value. Formally:

Axiom 5. D(X,Y ) =
∑n

i=1 yi ∗ d(xi, yi).

Finally, now we consider the relationship betweenD(·) and R(·) itself. Recall

that D(·) is calculated by way of information gain. As such, it is not symmetric:

D(X,Y ) ̸= D(Y,X). I argue, though, that any measure of relevance ought to

be symmetric. I care equally about evidence that brings my prior of .5 to .1,

and evidence that brings a prior of .1 to .5. Our measure should not favor only

gain. For our next axiom, then, we simply symmetrize D(·):

Axiom 6. R(X,Y ) = D(X,Y ) +D(Y,X).

We now have enough to prove that a unique R(·) follows from our desiderata.

First, we see that axioms 1-4 characterize a unique d(·):
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Proof. Take d(x, q) + d(q, y) = d(x, q′) + d(q′, y), and differentiate both sides

with respect to y. We can do so by Axiom 4. We get ∂d
∂y (q, y) = ∂d

∂y (q
′, y).

Say ∂d
∂y (q, y) = f(y) (we can do so because the choices of q, q′ are arbitrary

and so the partial derivatives are functions only of y). Integrate both sides,

getting d(q, y) = F (y) + G(q), with F =
∫
f and G a function. By Axiom

1, d(x, x) = F (x) + G(x) = 0. Then, F (x) + G(x) = F (y) − F (y) and so

G(x) + F (y) = F (y)− F (x). Hence, d(x, y) = F (y) +G(x) = F (y)− F (x).

Next, by Axiom 2, we have F (ky)− F (kx) = F (y)− F (x). We differentiate

with respect to y, yielding k ∗ F ′(ky) = F ′(y). Multiply both sides by y:

ky∗F ′(ky) = y∗F ′(y). Substitute a = ky: a∗F ′(a) = y∗F ′(y). Then, we know

that a∗F ′(a) is a constant; no matter what we choose for a, it will still be equal

to y ∗ F ′(y), without change in y ∗ F ′(y) (because the choice of k is arbitrary).

So, say that a∗F ′(a) = h, and then F ′(a) = h
a . We integrate both sides, getting

F (a) = h ∗ log(a) + C. Thus, d(x, y) = h ∗ log(ky) − h ∗ log(kx) = h ∗ log( yx ).

We normalize by setting h = 1, getting d(x, y) = log( yx ).

Now that we’ve determined the function d(·), we can find D(·), which is just

the ex-post average of the values of d(xi, yi), for all xi, yi that make up the prob-

ability distributions X and Y . Hence, D(X,Y ) =
∑n

i=1 yi ∗ log(
yi

xi
).14 Finally,

we have our relevance function: By Axiom 6, R(X,Y ) = D(X,Y ) +D(Y,X) =∑n
i=1 xi ∗ log(xi

yi
) + yi ∗ log( yi

xi
).1516

We can make sure, too, that R(X,Y ) satisfies other properties that we find

desirable. For example, we want R(X,Y ) to be nonnegative, with 0 as its mini-

mum. We can prove as much by showing that each of the individual summands

14So, D(X,Y ) = DKL(X,Y ) (D(·) is equal to the KL divergence).
15R(X,Y ) = DKL(X,Y ) +DKL(Y,X).
16The original definition of relevance is defined only over questions with discrete answers.

What about the possibility of a continuous answer? It is easy to come up with an example
of such: say we are firing a cannonball, and want to know the range on which it might fall
(between 25 and 50 yards? 50 and 100?). Included in our common ground will be a continuous
probability distribution over the possibilities. We can easily amend R(·) to be defined over
continuous distributions, by integrating as opposed to summing.
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is nonnegative:

Proof. Assume, for some xi ∈ X and yi ∈ Y , that xi ∗ log(xi

yi
)+yi ∗ log( yi

xi
) < 0,

for proof by contradiction. Without loss of generality, assume that xi ≥ yi, and

so log(xi

yi
) is nonnegative. Now, we have xi ∗ log(xi

yi
) < −yi ∗ log( yi

xi
), which

means that xi < yi. But, we had already assumed that xi ≥ yi, and so this is a

contradiction. Thus, xi ∗ log(xi

yi
) + yi ∗ log( yi

xi
) ≥ 0.

Next, we show that R(X,Y ) = 0 iff X = Y :

Proof. Assume that R(X,Y ) = 0. As shown above, each summand itself is

nonnegative. So, if their composite sum is to be equal to 0, each summand

must be equal to 0. Take any such summand: xj ∗ log(xj

yj
) + yj ∗ log( yj

xj
) = 0.

We get xj ∗ log(
xj

yj
) = −yj ∗ log(

yj

xj
), and thus xj = yj . This is true for all

j ∈ (1, . . . , n), and so X = Y . Showing that the other direction follows, that

R(X,Y ) = O whenever X = Y , is trivial.

Now I am in a position to restate precisely my primary claim. Take Q as the

question under discussion in a discourse, with possible answers (a1, · · · , an),

and say that X is a probability distribution in the common ground defined over

the ai. Say that an utterance m entails evidence E and that the interlocutors

in the discourse update accordingly, resulting in posterior distribution Y still

defined over the ai. The relevance that utterance m has to the discourse is

given by R(X,Y ) = DKL(X,Y )+DKL(Y,X) =
∑n

i=1 xi ∗ log(xi

yi
)+yi ∗ log( yi

xi
).

3.4 Redefining relevance

In this section I introduce a new definition of relevance, using the measure we

defined above. It will be broad enough to capture probabilistic utterances of

the sort we have been working with, without ignoring utterances of the usual
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(non-probabilistic) kind. To do so I will first have to introduce a stake-sensitive

cut-off point, which I will discuss below.

R(·) is a way of measuring relevance, but it does not tell us when an utterance

simply is or is not relevant. In order to be able to sort utterances into relevant or

irrelevant conversational moves, we need to be able to point to an on-off marker

of relevance. This marker will be a constant, k, such that an utterance counts

as relevant when R(X,Y ) ≥ k, and not when R(X,Y ) < k.

Whether or not an utterance is relevant in this way, however, depends on

context. In one scenario, the stakes of a discourse might be very low: perhaps

you and I are trying to decide whether or not to postpone a birthday party

because of the weather. Utterances that induce shifts such that R(·) is very

small will not matter much to us. You might have information that shifts our

belief that it will rain by .01, but the stakes are low enough that this contribution

is irrelevant. On the other hand, it is not difficult to imagine cases of inquiry

where small shifts matter more. If you and I are trying to decide whether or

not to climb Mt. Everest tomorrow, the state of the weather matters to us a

great deal - in the first scenario bad weather might ruin the birthday party, but

here it is a matter of life-and-death. As such, the information that shifts our

belief by .01 is still relevant.

We could formalize the stakes of the discourse in a number of ways, most

intuitively by measuring the difference in utility in possible outcomes to the

question under discussion. I will not take the time to do so here, although

I think it is an interesting project worthy of more research.17 Instead, I simply

say that we can assert the existence of a constant, k, that varies with the stakes

of the discourse. The higher the stakes, the lower the value of k. I then have

enough to introduce our new definition:

17There is a great deal of worthwhile literature on the matter of stake-sensitivity. For
example, see Weatherson (2005), or Buckwalter and Schaffer (2015). For literature outside of
philosophy, see Etchart-Vincent (2004), or Kunreuther et al. (2002).
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Definition 2. A move m is Relevant2 to the question under discussion q

with possible answers (a1, · · · , an) iff : 1) m is part of a strategy to answer q, 2)

m rules out at least one of the possible answers to q, or 3) m entails evidence E

such that, with X the probability distribution shared in the common ground

between the interlocutors and defined over the ai, and Y equal to X updated

by the interlocutors on E, R(X,Y ) > kj , with kj ∈ R+ for some context j, and

R(X,Y ) =
∑n

i=1 xi ∗ log(xi

yi
) + yi ∗ log( yi

xi
) .

Hence, non-probabilistic assertions, those that straightforwardly rule out

possible answers to the question under discussion, are still relevant conver-

sational moves. Relevance2 simply adds a clause to include utterances with

merely probabilistic import.

Importantly, Relevance2 is still a relation between moves and the ques-

tion under discussion, as it is in Roberts’ model. That is, R(·) itself is not

the relevance relation - it is a function between probability distributions. What

we have seen, however, is that questions and moves do not themselves give us

enough information to determine probabilistic relevance. Instead, we need to

know where the interlocutors stand on the question under discussion prior

to the utterance, and where they stand afterwards. Their prior and posterior

distributions are those standings, and R(·) is a way to then measure the distance

between.

4 Possible Objections

Here I address four worries that the reader might have aboutR(·) andRelevance2.

I believe that each of these can be handled in turn, without impacting the

strength of the model as a whole.
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4.1 Why not another measure?

To start with, one might argue that there is no good reason to think that R(·)

is the only satisfying way to measure the probabilistic relevance of utterances.

Perhaps the motivations for our axioms were unconvincing, or there is a different

measurement one has in mind. For example, consider Pettigrew’s characteriza-

tion of the Brier Score ( 1
N

∑N
t=1(ft−ot)

2) as a way to measure the accuracy of a

credence (2016). He uses similar desiderata, including a symmetry requirement,

and the measure is a function of two probability measures. Why not think that

this is a suitable replacement for R(·)?

For our purposes, Axiom 2 precludes the Brier Score. Because it is a mea-

sure of accuracy, it fails to take into account the informational requirements

levied by shifts with large multiplicative factors. By the summand of the Brier

Score, a shift from .1 to .9 over ai will be larger than one from .001 to .8 over

ai.
18 By R(·), the shift from .001 to .8 will be much larger, because it is a shift

from near certainty in not ai to high confidence that ai.

I use this as a case in point that each of our axioms are well-motivated. I

do not wish to claim that no other measure of relevance could ever be suitable.

Different philosophers might have different expectations for what a measure of

relevance should do, and might thus drop some of our axioms and add new ones.

I do claim, though, that the burden of proof will be on the next writer to explain

why any of the Axioms 1-6 are ill-founded.

4.2 Minimal and maximal credences

One might object to the fact that R(·) is undefined over 0. As regards probabil-

ity theory, this is a standard feature. If one’s credence in a possible answer is 0,

then no evidence can change that via Bayesian updating. Similarly, no evidence

18And the Brier score over the full distributions will be larger, provided that some reasonable
assumptions about the distributions hold.
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can bring one’s credence in a proposition to 1, if it was not already there. In

Roberts’ original model, though, as well as in our Relevance2, interlocutors

can completely rule out possible answers. It is unclear how they might do so, if

they are unable to bring their credences in those answers to 0.

If our interlocutors are rational Bayesian reasoners, we need not worry. They

will never have credences of 0 or 1, unless they are considering tautologies and

contradictions. Instead they might make progress in a discourse by deciding

that some suitably high credence has been reached, thus counting the question

under discussion as ‘answered.’

Recall, though, that we do not require our agents to be rational Bayesians;

they can update their priors in whichever way they choose. Again, this is not

an issue. If they are engaged in probabilistic discourse, they might decide that

they can ‘rule out’ an answer if a suitably low probability has been reached.

Or, following an utterance, their credences might actually jump to 1 or 0, de-

pending on how they are updating their priors. In a case like that, the value of

R(·) will not matter, because the utterance will count as relevant by the original

definition.

Similarly, R(·) lacks an upper bound, and will approach infinity as the proba-

bility of a possible answer approaches 0 or 1. This feature once more accentuates

the fact that R(·) is useful as part of a bifurcated definition of relevance; it is not

suited to compare the relevance of utterances that exclude answers with that

of utterances that shift probabilities. We will do best to consider R(·) only in

the context of discourse involving probabilities. When discourse moves towards

standard exclusion of possible answers, we return to Roberts-style relevance.
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4.3 Doubts about the common ground

Next, one might object to the inclusion of probabilities in the common ground.

In our model, interlocutors share precise probability distributions defined over

the possible answers to the question under the discussion. We also assume

that, upon learning new evidence, the interlocutors update these distributions

in the same way. As Case 1 shows, there are paradigmatic cases of probabilistic

discourse in which probability distributions are shared in the common ground.

Moreover, the inclusion of probabilities in the common ground is what allows

this sort of discourse to happen. Interlocutors can only make movement on such

probabilistic questions when they agree on the probabilites involved.

One might respond that, yes, cases of agreement exist, but Relevance2 is

limiting: it considers only such cases. In response, I point out that R(·) does not

require two or more interlocutors; it measures the relevance that an utterance

has to a single agent. It would be simple to examine cases where an utterance

has a different degree of relevance for the different agents involved. Interesting

work could be done on how to formalize these kinds of cases, but there is noth-

ing about R(·) and Relevance2 stopping them from being so applied.

I want to mention here, too, the potential difficulty posed by resiliency, as

discussed by Skyrms (1981), Joyce (2005), and others. A prior probability or

credence is resilient to the extent that it remains unchanged in the face of new

data. Two agents might have the same credence in a proposition, and be pre-

sented with the same new evidence, but one’s posterior credence might change

more than does the other’s, as a result of the evidence that that agent had

updated on in the past. In order to account for this possibility, we merely have

to strengthen our assumptions, and require that our agents hold credences over

the propositions in question that agree in-regards-to resiliency. As before, this

move is consistent with the notion of common ground, because interlocutors
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engaged in discourse often do have shared priors, do have shared evidence, and

so on. This kind of shared background is exactly what allows certain kinds of

tandem investigations to progress. And, as I point out above, Relevance2 and

R(·) are still useful in scenarios without agreement.

4.4 Doubts about degrees of belief

One might also worry as to the status of probabilities in the model that I have

described. That is: this is a useful description of probabilistic discourse, so

long as the probabilities involved are actual degrees of belief. Imagine instead

that credences are beliefs about probabilities, as, e.g., Buchanan and Dogramaci

claim (forthcoming). Applied to Case 1, maybe the question under discus-

sion would be: (what is, roughly, the probability that Mo has G?), with the

possible answers being (0, .1, · · · , .9, 1), and relevant utterances being those that

rule out the possible probabilities.

This kind of strategy just begs the question. The doctors described above

will still have to take evidence into account, and will still have to update their

priors accordingly, even if they are only changing the probabilities that their

beliefs are about, instead of changing their degrees of their beliefs. So, we are

left to wonder as to the relevance of the utterance that offered the evidence that

changed those beliefs. For example, say the doctors first thought that the right

answer to the above question was .5. Then they heard new evidence, which

made them decide that the right answer was actually .9. R(·) can still measure

the relevance of that evidence. Even in a world in which credences are beliefs

about probabilities, and not degrees of belief, there is still room to measure the

relevance of utterances that change those beliefs.
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5 Concluding Remarks

I end by reiterating my argument. First, interlocutors frequently hold proba-

bilities over answers to questions as common ground in conversation. Next,

a non-probabilistic definition of the relevance of an utterance fails to capture

when an utterance might be probabilistically relevant. To account for this, we

introduce a measure of relevance, R(·), along with a new definition: an asser-

tion is relevant when R(·) is larger than a certain amount, where that certain

amount is determined by the stake of the discourse.

As a final note, R(·) is interesting beyond the realm of conversational rel-

evance. As I have mentioned prior, the characterization of the KL diver-

gence that I provide is worth noting for formal epistemologists generally. Any

epistemologist who desires modeling tools that apply to non-rational or non-

Bayesian agents ought to be interested in relevance measures that take proba-

bility distributions as their arguments. It is further noteworthy that relevance-

considerations characterize the KL divergence and not the Brier Score. In-

regards-to information theory and statistics, there is a great deal of work on

axiomatic derivations of various divergence measures (see Ebrahimi, 2010, and

Csiszar, 1991). Our own derivation adds to this rich literature. Finally, not only

is there much stake-sensitivity adjacent work in economics, but there is also a

tradition of deriving similar measures from practically-motivated axioms (see

Maasoumi, 1986). The derivation of R(·) in this paper adds to this literature

as well.
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